A Parallel Algorithm for Phase Retrieval with Dictionary Learning

Tianyi Liu¹, Andreas M. Tillmann², Yang Yang³, Yonina C. Eldar⁴, Marius Pesavento¹

Introduction

- variable size and number of regularization parameters

Multi-antenna Random Access Network

Signal model: Y = |ADZ| + N

Problem Formulations

magnitude-only measurements Y

Proposed ℓ_1 -regularized nonlinear least-squares (LS) formulation	
$\min_{\mathbf{D},\mathbf{Z}} h(\mathbf{D},\mathbf{Z}) = \frac{1}{2} \ \mathbf{Y} - \ \mathbf{A}\mathbf{D}\mathbf{Z}\ \ _{F}^{2} + \underbrace{\lambda \ \mathbf{Z}\ _{1,1}}_{f(\mathbf{D},\mathbf{Z}): \text{ loss}} + g(\mathbf{Z}): \text{ regularization}$	• $\ \mathbf{Z}\ _{1,1} = \sum_{p=1}^{P} \sum_{i=1}^{I} z $ • $\lambda > 0$: regularization • Restrict D to avoid s
S.t. $\mathbf{D} \in \mathcal{D} = \{\mathbf{D} \mid \ \mathbf{d}_p\ _2 \le 1, p = 1, \dots, P\}$	 Loss f is nonsmootl
Alternative formulation (SC-PRIME) [1] $\min_{\mathbf{r}} = \frac{1}{2} \ \mathbf{Y} - \mathbf{A}\mathbf{X} \ _{F}^2 + \frac{\mu}{2} \ \mathbf{X} - \mathbf{D}\mathbf{Z}\ _{F}^2 + \rho \ \mathbf{Z}\ _{1,1}$	 Nonconvex and non Additional auxiliary

$$\sum_{p=1}^{P} \bar{f}^{(t)}(z_{pi}, \mathbf{D}^{(t)}, \mathbf{Z}_{-pi}^{(t)}) + \underbrace{\lambda \|\mathbf{Z}\|_{1,1}}_{g(\mathbf{Z})}$$

Future Work

References: [1] T. Qiu and D. P. Palomar, "Undersampled Sparse Phase Retrieval via Majorization–Minimization," IEEE Transactions on Signal Processing, vol. 65, no. 22, pp. 5957–5969, 2017 [2] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, "Rank-One Modification of the Symmetric Eigenproblem," Numer. Math, vol. 31, pp. 31–48, 1978.

COSIP

 $^{^{}m L}$ Communication Systems Group, Technische Universität Darmstadt, 64283 Darmstadt, Germany ² Institute for Mathematical Optimization, TU Braunschweig, 38106 Braunschweig, Germany

³ Fraunhofer ITWM, 67663 Kaiserslautern, Germany

⁴ Faculty of Math & CS, Weizmann Institute of Science, Rehovot 7610001, Israel